Evolutionary Tuning of Building Models to Monthly Electrical Consumption
نویسندگان
چکیده
Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an “art” which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The “Autotune” project is a novel methodology which leverages supercomputing, large databases of simulations, and machine learning to allow automatic calibration of simulations that match measured experimental data. This paper shares initial results from the automated methodology on commodity hardware applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to provide error rates, as measured by the sum of absolute error, for matching monthly load and electrical data from a highly-instrumented and automated ZEBRAlliance research home.
منابع مشابه
SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملRegional climate changes and their effects on monthly energy consumption in buildings in Iran
This present research work was carried out to evaluate the energy consumption in a typical Iranian building based on the forecast of climatic variables. Thus, the LARS-WG model was validated for some northwest stations of Iran, including Tabriz, Ardebil, Oromieh, Kermanshah, Hamedan, Sannandaj, Qazvin, and Zanjan. The average monthly outdoor temperature was forecasted from 2011 to 2100. The rel...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملTime Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...
متن کاملTime Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012